Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nicotinic acid-adenine dinucleotide phosphate (NAADP) is a novel and potent Ca(2+)-mobilizing agent in sea urchin eggs and other cell types. Little is known, however, concerning the properties of the putative intracellular NAADP receptor. In the present study we have characterized NAADP binding sites in sea urchin egg homogenates. [(32)P]NAADP bound to a single class of high-affinity sites that were reversibly inhibited by NaCl but insensitive to pH and Ca(2+). Binding of [(32)P]NAADP was lost in preparations that did not mobilize Ca(2+) in response to NAADP, indicating that [(32)P]NAADP probably binds to a receptor mediating Ca(2+) mobilization. Addition of excess unlabelled NAADP, at various times after initiation of [(32)P]NAADP binding, did not result in displacement of bound [(32)P]NAADP. These data show that NAADP becomes irreversibly bound to its receptor immediately upon association. Accordingly, incubation of homogenates with low concentrations of NAADP resulted in maximal labelling of NAADP binding sites. This unique property renders NAADP receptors exquisitely sensitive to their ligand, thereby allowing detection of minute changes in NAADP levels.

Type

Journal article

Journal

Biochem J

Publication Date

15/12/2000

Volume

352 Pt 3

Pages

725 - 729

Keywords

Adenosine Diphosphate Ribose, Animals, Binding Sites, Calcium, Calcium Signaling, Cell Extracts, Cyclic ADP-Ribose, Hydrogen-Ion Concentration, Inositol 1,4,5-Trisphosphate, Kinetics, Ligands, NADP, Ovum, Protein Binding, Sea Urchins, Sodium Chloride