Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

INTRODUCTION: The microbiota plays a critical role in modulating various aspects of host physiology, particularly through the microbiota-gut-brain (MGB) axis. However, the mechanisms that transduce and affect gut-to-brain communication are still not well understood. Recent studies have demonstrated that dysbiosis of the microbiome is associated with anxiety and depressive symptoms, which are common complications of metabolic syndrome. Germ-free (GF) animal models offer a valuable tool for studying the causal effects of microbiota on the host. METHODS: We employed gene expression and nuclear magnetic resonance (NMR)-based metabolomic techniques to investigate the relationships between brain plasticity and immune gene expression, peripheral immunity, and cerebral and liver metabolism in GF and specific pathogen-free (SPF) mice. RESULTS: Our principal findings revealed that brain acetate (p = 0.012) was significantly reduced in GF relative to SPF mice, whereas glutamate (p = 0.0013), glutamine (p = 0.0006), and N-acetyl aspartate (p = 0.0046) metabolites were increased. Notably, cFOS mRNA expression, which was significantly decreased in the prefrontal cortex of GF mice relative to SPF mice (p = 0.044), correlated with the abundance of a number of key brain metabolites altered by the GF phenotype, including glutamate and glutamine. DISCUSSION: These results highlight the connection between the GF phenotype, altered brain metabolism, and immediate-early gene expression. The study provides insight into potential mechanisms by which microbiota can regulate neurotransmission through modulation of the host's brain and liver metabolome, which may have implications for stress-related psychiatric disorders such as anxiety.

Original publication

DOI

10.3389/fnmol.2023.1155620

Type

Journal article

Journal

Front Mol Neurosci

Publication Date

2023

Volume

16

Keywords

acetate, cFOS, germ free animal, glutamate, glutamine, metabolomics, microbiota, short-chain fatty acids (SCFAs)