Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Forming a microcirculation is critical for vascularisation of artificial skin substitutes. One strategy to improve speed of grafting is to pre-form microvascular networks in the substitute before applying to a wound. For clinical application, this requires sufficient functional endothelial cell numbers. In vitro endothelial colony forming cells (ECFCs) derived cells were expanded from cord and adult blood donations and co-cultured with human dermal fibroblasts or bone marrow mesenchymal stem/stromal cells to form microvascular networks in the presence or absence of dermal substitutes which are in clinical use. The number of endothelial cells generated ranged from 1.03×10(9) to 2.18×10(11) from 10 adult blood donations and 1×10(12) to 1.76×10(13) from 6 cord blood units after 50 days in culture. Two adult donations failed to generate ECFCs. Both cord and adult blood cells formed 2D microvascular networks in vitro, although there was a significant difference in the functional capacity of adult and cord blood ECFCs. While co-culture of the latter within dermal substitutes Matriderm or Integra demonstrated the formation of 3D microvascular networks penetrating 100μm, enhanced expansion, while maintaining functional capacity, of adult blood cells is required for fully pre-vascularising the clinical grade acellular dermal substitutes used here prior to applying these to burns.

Original publication

DOI

10.1016/j.burns.2011.12.019

Type

Journal

Burns

Publication Date

08/2012

Volume

38

Pages

691 - 701

Keywords

Adult, Burns, Cells, Cultured, Coculture Techniques, Endothelium, Vascular, Feasibility Studies, Female, Fetal Blood, Humans, Male, Mesenchymal Stromal Cells, Microvessels, Middle Aged, Skin, Skin, Artificial, Stem Cells, Stromal Cells, Tissue Engineering