Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sodium currents in cell lines transfected with the sole alpha-subunit, or constitutively expressing sodium channels, have an inactivation that is always prevalently mono-exponential. Differently, expression of alpha-subunit in Xenopus oocytes exerts slow inactivating currents with biphasic decay, while simultaneous co-transfection of alpha and beta1 restores a mono-exponential (normal) inactivation. A hypothesis for such differences is that an endogenous presence of beta1 or beta1-alternative splicing, beta1A, in cells could account for the normal inactivation. To test this hypothesis and to evaluate the role for the beta1A, we inhibited the expression of beta1/beta1A by antisense oligonucleotides on Nav1.4-transfected human embryonic cell line 293 (HEK) cells. Reduction of beta1/beta1A produces no significant functional effects in Nav1.4-HEK. This result invalidates the hypothesis that the lack of slow-mode in cell lines is simply due to a constitutive expression of beta1/beta1A.

Original publication

DOI

10.1016/s0304-3940(02)01284-3

Type

Journal article

Journal

Neurosci Lett

Publication Date

23/01/2003

Volume

336

Pages

175 - 179

Keywords

Alternative Splicing, Cell Line, Electrophysiology, Humans, Immunohistochemistry, Oligonucleotides, Antisense, Sodium Channels