Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

NAADP potently triggers Ca2+ release from acidic lysosomal and endolysosomal Ca2+ stores. Human two-pore channels (TPC1 and TPC2), which are located on these stores, are involved in this process, but there is controversy over whether TPC1 and TPC2 constitute the Ca2+ release channels. We therefore examined the single-channel properties of human TPC1 after reconstitution into bilayers of controlled composition. We found that TPC1 was permeable not only to Ca2+ but also to monovalent cations and that permeability to protons was the highest (relative permeability sequence: H+ >> K+ > Na(+) ≥ Ca2+). NAADP or Ca2+ activated TPC1, and the presence of one of these ligands was required for channel activation. The endolysosome-located lipid phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] had no effect on TPC1 open probability but significantly increased the relative permeability of Na+ to Ca2+ and of H+ to Ca2+. Furthermore, our data showed that, although both TPC1 and TPC2 are stimulated by NAADP, these channels differ in ion selectivity and modulation by Ca2+ and pH. We propose that NAADP triggers H+ release from lysosomes and endolysomes through activation of TPC1, but that the Ca2+ -releasing ability of TPC1 will depend on the ionic composition of the acidic stores and may be influenced by other regulators that affect TPC1 ion permeation.

Original publication

DOI

10.1126/scisignal.2004854

Type

Journal article

Journal

Sci Signal

Publication Date

20/05/2014

Volume

7

Keywords

Calcium, Calcium Channels, Endosomes, HEK293 Cells, Humans, Hydrogen-Ion Concentration, Ion Transport, Lysosomes, NADP, Permeability, Phosphatidylinositol Phosphates, Protons