Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

cADPR (cyclic ADP-ribose) is a universal Ca(2+) mobilizing second messenger. In T-cells cADPR is involved in sustained Ca(2+) release and also in Ca(2+) entry. Potential mechanisms for the latter include either capacitative Ca(2+) entry, secondary to store depletion by cADPR, or direct activation of the non-selective cation channel TRPM2 (transient receptor potential cation channel, subfamily melastatin, member 2). Here we characterize the molecular target of the newly-described membrane-permeant cADPR agonist 8-Br-N(1)-cIDPR (8-bromo-cyclic IDP-ribose). 8-Br-N(1)-cIDPR evoked Ca(2+) signalling in the human T-lymphoma cell line Jurkat and in primary rat T-lymphocytes. Ca(2+) signalling induced by 8-Br-N(1)-cIDPR consisted of Ca(2+) release and Ca(2+) entry. Whereas Ca(2+) release was sensitive to both the RyR (ryanodine receptor) blocker RuRed (Ruthenium Red) and the cADPR antagonist 8-Br-cADPR (8-bromo-cyclic ADP-ribose), Ca(2+) entry was inhibited by the Ca(2+) entry blockers Gd(3+) (gadolinium ion) and SKF-96365, as well as by 8-Br-cADPR. To unravel a potential role for TRPM2 in sustained Ca(2+) entry evoked by 8-Br-N(1)-cIDPR, TRPM2 was overexpressed in HEK (human embryonic kidney)-293 cells. However, though activation by H(2)O(2) was enhanced dramatically in those cells, Ca(2+) signalling induced by 8-Br-N(1)-cIDPR was almost unaffected. Similarly, direct analysis of TRPM2 currents did not reveal activation or co-activation of TRPM2 by 8-Br-N(1)-cIDPR. In summary, the sensitivity to the Ca(2+) entry blockers Gd(3+) and SKF-96365 is in favour of the concept of capacitative Ca(2+) entry, secondary to store depletion by 8-Br-N(1)-cIDPR. Taken together, 8-Br-N(1)-cIDPR appears to be the first cADPR agonist affecting Ca(2+) release and secondary Ca(2+) entry, but without effect on TRPM2.

Original publication

DOI

10.1042/BJ20082308

Type

Journal article

Journal

Biochem J

Publication Date

29/07/2009

Volume

422

Pages

139 - 149

Keywords

Animals, Calcium Signaling, Cell Membrane Permeability, Cyclic ADP-Ribose, Extracellular Space, Gadolinium, Humans, Imidazoles, Inosine Nucleotides, Ion Channel Gating, Jurkat Cells, Microinjections, Rats, Ruthenium Red, TRPM Cation Channels