Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mice lacking prion protein (PrP-null) are resistant to transmissible spongiform encephalopathies. However, the normal functions of this highly conserved protein remain controversial. This study examines whether PrP-null mice develop normal neuronal pathways, specifically the mossy fibre pathway, within the hippocampus. Timm stained hippocampal sections from the PrP-null group had more granules than the controls in: the granule cell layer, the inner molecular layer of the dentate gyrus, and the infrapyramidal region of CA3. This resembles the mossy fibre collateral and terminal sprouting seen in certain epilepsies. The abnormal connectivity might be predicted to promote epileptiform activity, but extracellular electrophysiological recordings from the granule cell layer revealed a reduced excitability in the PrP-null group, both with and without blockade of GABA(A) receptor-mediated inhibition. We propose that reorganization of neuronal circuity is a feature of PrP-null mice.

Type

Journal article

Journal

Brain Res

Publication Date

25/04/1997

Volume

755

Pages

28 - 35

Keywords

Analysis of Variance, Animals, Dentate Gyrus, Electroencephalography, Evoked Potentials, Hippocampus, Mice, Mice, Inbred C57BL, Nerve Fibers, Nerve Tissue Proteins, Prions, Seizures, Staining and Labeling, Synapses