Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The imino sugar N-butyldeoxynojirimycin is an inhibitor of the ceramide-specific glucosyltransferase that catalyzes the first step in glycosphingolipid biosynthesis. It results in extensive glycosphingolipid depletion in cells treated in vitro, without causing toxicity. However, we currently do not know the degree to which glycosphingolipids can be depleted in vivo in a mammalian species. We have therefore administered N-butyldeoxynojirimycin long term to young mice and have found that glycosphingolipid levels are reduced (50-70%) in all tissues examined, without resulting in any overt pathology. When the lymphoid tissues from these mice were examined, they were found to be 50% acellular relative to non-lymphoid tissues. These data implicate a role for glycosphingolipids in the biology of the immune system or indicate an additional as yet unknown activity of N-butyldeoxynojirimycin. Extensive glycosphingolipid depletion resulting from N-butyldeoxynojirimycin administration is therefore well tolerated in adult mice, and this compound may be in an invaluable tool for probing glycosphingolipid functions in vivo. In addition, this drug may be effective in clinical situations where glycosphingolipid depletion would be desirable, such as the in the treatment of the human glycosphingolipidoses.

Original publication

DOI

10.1074/jbc.272.31.19365

Type

Journal

J Biol Chem

Publication Date

01/08/1997

Volume

272

Pages

19365 - 19372

Keywords

1-Deoxynojirimycin, Animals, Body Weight, Cholera Toxin, Enzyme Inhibitors, Female, Glucosyltransferases, Glycosphingolipids, Immunophenotyping, Liver, Lymphoid Tissue, Mice, Mice, Inbred C57BL