Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Cyclic nucleotide hy drolysing phosphodiesterases (PDEs) are key regulators of cyclic nucleotide (e.g. cAMP and cGMP) signalling. Here we examine the role of PDEs in the physiology of atrial myocytes (AMs), the pathogenesis of atrial fibrillation (AF) and the potential of PDEs as therapeutic targets for AF. PDE1-5 and 8 are present and functional in AMs. PDE2-4 are important regulators of AM contraction but their role beyond atrial contractility is unclear. The role of PDE1,5 and 8 in healthy AMs is unknown but of interest because of their roles in ventricular myocytes. We propose that PDE2-5 and PDE8 are potential targets to prevent the triggering of AF considering their effects on Ca2+ handling and /or electrical activity. PDE1-5 are possible targets to treat patients with paroxysmal or persistent AF caused by pulmonary vein automaticity. PDE8B2 is a possible target for patients with persistent AF due to its altered expression. Research should aim to identify the presence, localisation, and function of specific PDE isoforms in human atria. Ultimately, the paucity of PDE isoform-specific small molecule modulators and the difficulty of delivering PDE-targeted medications or therapies to particular cell types limit current research and its application.

Original publication

DOI

10.1152/ajpcell.00782.2024

Type

Journal

Am J Physiol Cell Physiol

Publication Date

07/03/2025

Keywords

Atria, arrhythmias, cAMP, cGMP, cardiac, phosphodiesterase