Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

To better understand excitability, and hence contraction, the ionic currents underlying the action potential were identified and characterised in enzymatically isolated smooth muscle cells of the rat ureter. Using the whole-cell patch-clamp, under voltage-clamp conditions with K(+) in the pipette, three types of responses occurred to depolarisation: (1) sustained outward current and spontaneous transient outward currents (STOCs); (2) inward current; and (3) fast outward current. Investigation using different voltage protocols and pharmacological blockers and agonists revealed the presence of three outward and two inward currents. The outward currents were: (1) a sustained BK current, sensitive to low concentrations of tetraethylammonium (TEA) and featuring bursts of STOCs superimposed on it; (2) a fast, transient, A-type K current sensitive to 4-aminopyridine; and (3) a TEA and Ca(2+)-insensitive, late K(+) rectifier current. The inward currents were: (1) a fast L-type Ca(2+) channel current sensitive to nifedipine, Cd(2+) and potentiated by Ba(2+); and (2) a Ca(2+)-sensitive Cl(-) channel, which was inhibited by niflumic acid and Ba(2+), and produced a large tail current upon repolarisation at the end of the voltage step. The I- V relationships and peak amplitudes of all the currents are described. The finding of a K(+) rectifier and Ca(2+)-activated Cl(-) channel distinguish the rat ureteric cells from those of the guinea-pig. Thus, as well as the previously established difference in sarcoplasmic reticulum Ca(2+)-release mechanisms, there is also a species difference in ion channel expression in this tissue. We relate these currents to their possible contribution to the characteristically extremely long lasting action potential in the rat ureter.

Original publication

DOI

10.1007/s00424-002-0941-7

Type

Journal

Pflugers Arch

Publication Date

12/2002

Volume

445

Pages

444 - 453

Keywords

4-Aminopyridine, Animals, Barium, Cadmium, Electric Conductivity, Female, In Vitro Techniques, Ion Channels, Myocytes, Smooth Muscle, Potassium Channel Blockers, Rats, Species Specificity, Tetraethylammonium, Ureter