Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing.
Viney TJ., Balint K., Hillier D., Siegert S., Boldogkoi Z., Enquist LW., Meister M., Cepko CL., Roska B.
Intrinsically photosensitive melanopsin-containing retinal ganglion cells (ipRGCs) control important physiological processes, including the circadian rhythm, the pupillary reflex, and the suppression of locomotor behavior (reviewed in [1]). ipRGCs are also activated by classical photoreceptors, the rods and cones, through local retinal circuits [2, 3]. ipRGCs can be transsynaptically labeled through the pupillary-reflex circuit with the derivatives of the Bartha strain of the alphaherpesvirus pseudorabies virus(PRV) [4, 5] that express GFP [6-12]. Bartha-strain derivatives spread only in the retrograde direction [13]. There is evidence that infected cells function normally for a while during GFP expression [7]. Here we combine transsynaptic PRV labeling, two-photon laser microscopy, and electrophysiological techniques to trace the local circuit of different ipRGC subtypes in the mouse retina and record light-evoked activity from the transsynaptically labeled ganglion cells. First, we show that ipRGCs are connected by monostratified amacrine cells that provide strong inhibition from classical-photoreceptor-driven circuits. Second, we show evidence that dopaminergic interplexiform cells are synaptically connected to ipRGCs. The latter finding provides a circuitry link between light-dark adaptation and ipRGC function.