Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The use of imino sugars for the potential treatment of lysosomal glycolipid storage diseases and hepatitis virus infections requires accurate, quantitative measurement of these compounds in biological samples. We demonstrate here the versatility of cation-exchange chromatography and pulsed amperometric detection of a range of compounds that differ in both isometric structure and N-alkyl chain length. Although column retention appears dependent upon residual charge on the imine function, successful isocratic separation can be achieved by secondary hydrophobic interactions. A series of N-alkylated deoxynojirimycin compounds containing C(1-10) alkyl chains are readily separated and detected by pulsed amperometry after cation suppression. Using experimentally derived response factors for imino sugars and measurement of peak areas we have developed a reliable method for quantitatively determining concentrations in solution. A rapid protocol for the removal of protein and contaminants in biological samples is described. This has allowed the successful measurement of imino sugars in animal tissues and will be useful for understanding the factors involved in compound bioavailability and in the design of novel therapeutics.

Original publication

DOI

10.1006/abio.2000.4678

Type

Journal article

Journal

Anal Biochem

Publication Date

15/08/2000

Volume

284

Pages

136 - 142

Keywords

1-Deoxynojirimycin, Animals, Brain, Carbohydrates, Cations, Chromatography, Ion Exchange, Electrochemistry, Liver, Lysosomal Storage Diseases, Mice, Mice, Inbred C57BL, Models, Chemical, Time Factors