Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We identified an autosomal recessive infantile-onset symptomatic epilepsy syndrome associated with developmental stagnation and blindness. Assuming a founder effect in a large Old Order Amish pedigree, we carried out a genome-wide screen for linkage and identified a single region of homozygosity on chromosome 2p12-p11.2 spanning 5.1 cM (maximum lod score of 6.84). We sequenced genes in the region and identified a nonsense mutation in SIAT9, which is predicted to result in the premature termination of the GM3 synthase enzyme (also called lactosylceramide alpha-2,3 sialyltransferase). GM3 synthase is a member of the sialyltransferase family and catalyzes the initial step in the biosynthesis of most complex gangliosides from lactosylceramide. Biochemical analysis of plasma glycosphingolipids confirmed that affected individuals lack GM3 synthase activity, as marked by a complete lack of GM3 ganglioside and its biosynthetic derivatives and an increase in lactosylceramide and its alternative derivatives. Although the relationship between defects in ganglioside catabolism and a range of lysosomal storage diseases is well documented, this is the first report, to our knowledge, of a disruption of ganglioside biosynthesis associated with human disease.

Original publication

DOI

10.1038/ng1460

Type

Journal article

Journal

Nat Genet

Publication Date

11/2004

Volume

36

Pages

1225 - 1229

Keywords

Blindness, Chromosomes, Human, Pair 2, Codon, Nonsense, Developmental Disabilities, Epilepsy, Female, Founder Effect, G(M3) Ganglioside, Genes, Recessive, Glycosphingolipids, Humans, Infant, Infant, Newborn, Male, Pedigree, Sialyltransferases, Syndrome