Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Hypoxic pulmonary vasoconstriction is unique to pulmonary arteries and serves to match lung perfusion to ventilation. However, in disease states this process can promote hypoxic pulmonary hypertension. Hypoxic pulmonary vasoconstriction is associated with increased NADH levels in pulmonary artery smooth muscle and with intracellular Ca(2+) release from ryanodine-sensitive stores. Because cyclic ADP-ribose (cADPR) regulates ryanodine receptors and is synthesized from beta-NAD(+), we investigated the regulation by beta-NADH of cADPR synthesis and metabolism and the role of cADPR in hypoxic pulmonary vasoconstriction. Significantly higher rates of cADPR synthesis occurred in smooth muscle homogenates of pulmonary arteries, compared with homogenates of systemic arteries. When the beta-NAD(+):beta-NADH ratio was reduced, the net amount of cADPR accumulated increased. This was due, at least in part, to the inhibition of cADPR hydrolase by beta-NADH. Furthermore, hypoxia induced a 10-fold increase in cADPR levels in pulmonary artery smooth muscle, and a membrane-permeant cADPR antagonist, 8-bromo-cADPR, abolished hypoxic pulmonary vasoconstriction in pulmonary artery rings. We propose that the cellular redox state may be coupled via an increase in beta-NADH levels to enhanced cADPR synthesis, activation of ryanodine receptors, and sarcoplasmic reticulum Ca(2+) release. This redox-sensing pathway may offer new therapeutic targets for hypoxic pulmonary hypertension.

Original publication

DOI

10.1074/jbc.M004849200

Type

Journal article

Journal

J Biol Chem

Publication Date

06/04/2001

Volume

276

Pages

11180 - 11188

Keywords

ADP-ribosyl Cyclase, Animals, Antigens, CD, Antigens, CD38, Antigens, Differentiation, Hypertension, Pulmonary, Hypoxia, Male, NAD+ Nucleosidase, Oxidation-Reduction, Pulmonary Circulation, Rabbits, Vasoconstriction