Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The fluorination of amino acid residues represents a near-isosteric alteration with the potential to report on biological pathways, yet the site-directed editing of carbon-hydrogen (C-H) bonds in complex biomolecules to carbon-fluorine (C-F) bonds is challenging, resulting in its limited exploitation. Here, we describe a protocol for the posttranslational and site-directed alteration of native γCH2 to γCF2 in protein sidechains. This alteration allows the installation of difluorinated sidechain analogs of proteinogenic amino acids, in both native and modified states. This chemical editing is robust, mild, fast and highly efficient, exploiting photochemical- and radical-mediated C-C bonds grafted onto easy-to-access cysteine-derived dehydroalanine-containing proteins as starting materials. The heteroaryl-sulfonyl reagent required for generating the key carbon-centered C• radicals that install the sidechain can be synthesized in two to six steps from commercially available precursors. This workflow allows the nonexpert to create fluorinated proteins within 24 h, starting from a corresponding purified cysteine-containing protein precursor, without the need for bespoke biological systems. As an example, we readily introduce three γCF2-containing methionines in all three progressive oxidation states (sulfide, sulfoxide and sulfone) as D-/L- forms into histone eH3.1 at site 4 (a relevant lysine to methionine oncomutation site), and each can be detected by 19F-nuclear magnetic resonance of the γCF2 group, as well as the two diastereomers of the sulfoxide, even when found in a complex protein mixture of all three. The site-directed editing of C-H→C-F enables the use of γCF2 as a highly sensitive, 'zero-size-zero-background' label in protein sidechains, which may be used to probe biological phenomena, protein structures and/or protein-ligand interactions by 19F-based detection methods.

Original publication

DOI

10.1038/s41596-022-00800-9

Type

Journal article

Journal

Nat Protoc

Publication Date

05/2023

Volume

18

Pages

1543 - 1562

Keywords

Fluorine, Cysteine, Proteins, Amino Acids, Methionine, Magnetic Resonance Spectroscopy, Carbon