Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Discovered almost 40 years ago, the potent vasoconstrictor peptide endothelin-1 (ET-1) has a wide range of roles both physiologically and pathologically. In recent years, there has been a focus on the contribution of ET-1 to disease. This has led to the development of various ET receptor antagonists, some of which are approved for the treatment of pulmonary arterial hypertension, while clinical trials for other diseases have been numerous yet, for the most part, unsuccessful. However, given the vast physiological impact of ET-1, it is both surprising and disappointing that therapeutics targeting the ET-1 pathway remain limited. Strategies aimed at the pathways influencing the synthesis and release of ET-1 could provide new therapeutic avenues, yet research using cultured cells in vitro has had little follow up in intact ex vivo and in vivo preparations. This article summarises what is currently known about the synthesis, storage and release of ET-1 as well as the role of ET-1 in several diseases including cardiovascular diseases, COVID-19 and chronic pain. Unravelling the ET-1 pathway and identifying therapeutic targets has the potential to treat many diseases whether through disease prevention, slowing disease progression or reversing pathology.

Original publication

DOI

10.3390/ijms241411295

Type

Journal article

Journal

Int J Mol Sci

Publication Date

10/07/2023

Volume

24

Keywords

cardiovascular disease, endothelin-1, endothelium, release, storage, vasculature, Humans, Endothelin-1, COVID-19, Cardiovascular Diseases, Endothelins