Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Despite significant advances in the treatment of infertility via assisted reproductive technology (ART), the underlying causes of idiopathic male infertility still remain unclear. Accumulating evidence suggests that disorders associated with testicular gene expression may play an important role in male infertility. To be able to fully study the molecular mechanisms underlying spermatogenesis and fertilization, it is necessary to manipulate gene expression in male germ cells. Since there is still no reliable method of recapitulating spermatogenesis culture, the development of alternative transgenic approaches is paramount in the study of gene function in testis and sperm. Established methods of creating transgenic animals rely heavily upon injection of DNA into the pronucleus or the injection of transfected embryonic stem cells into blastocysts to form chimeras. Despite the success of these two approaches for making transgenic and knockout animals, concerns remain over costs and the efficiency of transgene integration. Consequently, efforts are in hand to evaluate alternative methodologies. At present, there is much interest in developing approaches that utilize spermatozoa as vectors for gene transfer. These approaches, including testis mediated gene transfer (TMGT) and sperm mediated gene transfer (SMGT), have great potential as tools for infertility research and in the creation of transgenic animals. The aim of this short review is to briefly describe developments in this field and discuss how these gene transfer methods might be used effectively in future research and clinical arenas.

Original publication

DOI

10.1080/01485010701426455

Type

Journal

Arch Androl

Publication Date

07/2007

Volume

53

Pages

187 - 197

Keywords

Adenoviridae, Animals, Electroporation, Gene Transfer Techniques, Genetic Vectors, Infertility, Male, Male, Retroviridae, Spermatozoa, Testis