Skip to main content

Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Synaptic dysfunction is an early pathological phenotype of Alzheimer's disease (AD) that is initiated by oligomers of amyloid β peptide (Aβos). Treatments aimed at correcting synaptic dysfunction could be beneficial in preventing disease progression, but mechanisms underlying Aβo-induced synaptic defects remain incompletely understood. Here, we uncover an epithelial sodium channel (ENaC) - CaV2.3 - protein kinase C (PKC) - glycogen synthase kinase-3β (GSK-3β) signal transduction pathway that is engaged by Aβos to enhance presynaptic CaV2.1 voltage-gated Ca2+ channel activity, resulting in pathological potentiation of action-potential-evoked synaptic vesicle exocytosis. We present evidence that the pathway is active in human APP transgenic mice in vivo and in human AD brains, and we show that either pharmacological CaV2.1 inhibition or genetic CaV2.1 haploinsufficiency is sufficient to restore normal neurotransmitter release. These findings reveal a previously unrecognized mechanism driving synaptic dysfunction in AD and identify multiple potentially tractable therapeutic targets.

Original publication

DOI

10.1016/j.celrep.2025.115451

Type

Journal

Cell Rep

Publication Date

23/03/2025

Volume

44

Keywords

Alzheimer's disease, Aβ oligomer, CP: Neuroscience, Ca2(+) channel, neurodegeneration, neurotransmitter release, synaptic vesicle