Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Correlated activity of cortical neurons underlies cognitive processes. Networks of several distinct classes of gamma-aminobutyric acid (GABA)ergic interneurons are capable of synchronizing cortical neurons at behaviourally relevant frequencies. Here we show that perisomatic and dendritic GABAergic inputs provided by two classes of GABAergic cells, fast spiking and bitufted interneurons, respectively, entrain the timing of postsynaptic spikes differentially in both pyramidal cells and interneurons at beta and gamma frequencies. Entrainment of pyramidal as well as regular spiking non-pyramidal cells was input site and inhibitory postsynaptic potential frequency dependent. Gamma frequency input from fast spiking cells entrained pyramidal cells on the positive phase of an intrinsic cellular theta oscillation, whereas input from bitufted cells was most effective in gamma frequency entrainment on the negative phase of the theta oscillation. The discharge of regular spiking interneurons was phased at gamma frequency by dendritic input from bitufted cells, but not by perisomatic input from fast spiking cells. Action potentials in fast spiking GABAergic neurons were phased at gamma frequency by both other fast spiking and bitufted cells, regardless of whether the presynaptic GABAergic input was at gamma or beta frequency. The interaction of cell type-specific intrinsic properties and location-selective GABAergic inputs could result in a spatio-temporally regulated synchronization and gating of cortical spike propagation in the network.

Original publication

DOI

10.1111/j.1460-9568.2004.03719.x

Type

Journal article

Journal

Eur J Neurosci

Publication Date

11/2004

Volume

20

Pages

2681 - 2690

Keywords

Action Potentials, Animals, Animals, Newborn, Cerebral Cortex, Dendrites, Electric Stimulation, In Vitro Techniques, Lysine, Microscopy, Electron, Transmission, Models, Neurological, Neural Inhibition, Neurons, Probability, Rats, Rats, Wistar, Synapses, Time Factors, gamma-Aminobutyric Acid