Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Endothelial cell (EC) Ca(2+)-activated K channels (SK(Ca) and IK(Ca) channels) generate hyperpolarization that passes to the adjacent smooth muscle cells causing vasodilation. IK(Ca) channels focused within EC projections toward the smooth muscle cells are activated by spontaneous Ca(2+) events (Ca(2+) puffs/pulsars). We now show that transient receptor potential, vanilloid 4 channels (TRPV4 channels) also cluster within this microdomain and are selectively activated at low intravascular pressure. In arterioles pressurized to 80 mmHg, ECs generated low-frequency (~2 min(-1)) inositol 1,4,5-trisphosphate receptor-based Ca(2+) events. Decreasing intraluminal pressure below 50 mmHg increased the frequency of EC Ca(2+) events twofold to threefold, an effect blocked with the TRPV4 antagonist RN1734. These discrete events represent both TRPV4-sparklet- and nonsparklet-evoked Ca(2+) increases, which on occasion led to intracellular Ca(2+) waves. The concurrent vasodilation associated with increases in Ca(2+) event frequency was inhibited, and basal myogenic tone was increased, by either RN1734 or TRAM-34 (IK(Ca) channel blocker), but not by apamin (SK(Ca) channel blocker). These data show that intraluminal pressure influences an endothelial microdomain inversely to alter Ca(2+) event frequency; at low pressures the consequence is activation of EC IK(Ca) channels and vasodilation, reducing the myogenic tone that underpins tissue blood-flow autoregulation.

Original publication

DOI

10.1073/pnas.1211946109

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

30/10/2012

Volume

109

Pages

18174 - 18179

Keywords

Animals, Arterioles, Calcium, Endothelium, Vascular, Muscle Tonus, Potassium Channel Blockers, Potassium Channels, Pyrazoles, Rats, Sulfonamides, Vasodilation