Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Rapid nerve impulse conduction in myelinated axons requires the concentration of voltage-gated sodium channels at nodes of Ranvier. Myelin-forming oligodendrocytes in the central nervous system (CNS) induce the clustering of sodium channels into nodal complexes flanked by paranodal axoglial junctions. However, the molecular mechanisms for nodal complex assembly in the CNS are unknown. Two isoforms of Neurofascin, neuronal Nfasc186 and glial Nfasc155, are components of the nodal and paranodal complexes, respectively. Neurofascin-null mice have disrupted nodal and paranodal complexes. We show that transgenic Nfasc186 can rescue the nodal complex when expressed in Nfasc(-/-) mice in the absence of the Nfasc155-Caspr-Contactin adhesion complex. Reconstitution of the axoglial adhesion complex by expressing transgenic Nfasc155 in oligodendrocytes also rescues the nodal complex independently of Nfasc186. Furthermore, the Nfasc155 adhesion complex has an additional function in promoting the migration of myelinating processes along CNS axons. We propose that glial and neuronal Neurofascins have distinct functions in the assembly of the CNS node of Ranvier.

Original publication

DOI

10.1083/jcb.200712154

Type

Journal article

Journal

J Cell Biol

Publication Date

30/06/2008

Volume

181

Pages

1169 - 1177

Keywords

Animals, Cell Adhesion, Cell Adhesion Molecules, Cell Adhesion Molecules, Neuronal, Cell Movement, Central Nervous System, Contactins, Mice, Mice, Inbred C57BL, Mutant Proteins, Myelin Sheath, Nerve Growth Factors, Neuroglia, Neurons, Oligodendroglia, Phenotype, Protein Isoforms, Ranvier's Nodes, Sodium Channels