Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Tryptophan metabolites have been linked in observational studies with type 2 diabetes, cognitive disorders, inflammation and immune system regulation. A rate-limiting enzyme in tryptophan conversion is arylformamidase (Afmid), and a double knockout of this gene and thymidine kinase (Tk) has been reported to cause renal failure and abnormal immune system regulation. In order to further investigate possible links between abnormal tryptophan catabolism and diabetes and to examine the effect of single Afmid knockout, we have carried out metabolic phenotyping of an exon 2 Afmid gene knockout. These mice exhibit impaired glucose tolerance, although their insulin sensitivity is unchanged in comparison to wild-type animals. This phenotype results from a defect in glucose stimulated insulin secretion and these mice show reduced islet mass with age. No evidence of a renal phenotype was found, suggesting that this published phenotype resulted from loss of Tk expression in the double knockout. However, despite specifically removing only exon 2 of Afmid in our experiments we also observed some reduction of Tk expression, possibly due to a regulatory element in this region. In summary, our findings support a link between abnormal tryptophan metabolism and diabetes and highlight beta cell function for further mechanistic analysis.

Original publication

DOI

10.1242/bio.013342

Type

Journal article

Journal

Biol Open

Publication Date

02/10/2015

Volume

4

Pages

1367 - 1375

Keywords

Arylformamidase, Diabetes, Insulin secretion, Kynurenine, Tryptophan