Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Catechol-O-methyltransferase (COMT) modulates dopamine levels in the prefrontal cortex. The human gene contains a polymorphism (Val(158)Met) that alters enzyme activity and influences PFC function. It has also been linked with cognition and anxiety, but the findings are mixed. We therefore developed a novel mouse model of altered COMT activity. The human Met allele was introduced into the native mouse COMT gene to produce COMT-Met mice, which were compared with their wild-type littermates. The model proved highly specific: COMT-Met mice had reductions in COMT abundance and activity, compared with wild-type mice, explicitly in the absence of off-target changes in the expression of other genes. Despite robust alterations in dopamine metabolism, we found only subtle changes on certain cognitive tasks under baseline conditions (eg, increased spatial novelty preference in COMT-Met mice vs wild-type mice). However, genotype differences emerged after administration of the COMT inhibitor tolcapone: performance of wild-type mice, but not COMT-Met mice, was improved on the 5-choice serial reaction time task after tolcapone administration. There were no changes in anxiety-related behaviors in the tests that we used. Our findings are convergent with human studies of the Val(158)Met polymorphism, and suggest that COMT's effects are most prominent when the dopamine system is challenged. Finally, they demonstrate the importance of considering COMT genotype when examining the therapeutic potential of COMT inhibitors.

Original publication

DOI

10.1038/npp.2016.119

Type

Journal article

Journal

Neuropsychopharmacology

Publication Date

12/2016

Volume

41

Pages

3060 - 3069

Keywords

Analysis of Variance, Animals, Benzophenones, Brain, Catechol O-Methyltransferase, Catechol O-Methyltransferase Inhibitors, Choice Behavior, Cognition Disorders, Disease Models, Animal, Exploratory Behavior, Genotype, Maze Learning, Methionine, Mice, Mice, Transgenic, Nitrophenols, Polymorphism, Single Nucleotide, Reaction Time, Valine