Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Prion diseases are heterogeneous in clinical presentation, suggesting that different prion diseases have distinct pathophysiological changes. To understand the pathophysiology specific to variant Creutzfeldt-Jakob Disease (vCJD), in vitro electrophysiological studies were performed in a mouse model in which human-derived vCJD prions were transmitted to transgenic mice expressing human instead of murine prion protein. Paired-pulse stimulation of the Schaffer collaterals evoked hypersynchronous bursting in the hippocampus of vCJD-inoculated mice; comparable bursts were never observed in control or Prnp knockout mice, or in mice inoculated with a strain of prion associated with classical CJD. Furthermore, NMDA receptor-mediated excitation was increased in vCJD-inoculated mice. Using pharmacological experiments and computer simulations, we demonstrate that the increase in NMDA receptor-mediated excitation is necessary and sufficient to explain the distinctive bursting pattern in vCJD. These pathophysiological changes appear to result from a prion strain-specific gain-of-function and may explain some of the distinguishing clinical features of vCJD.

Original publication

DOI

10.1016/j.nbd.2008.06.007

Type

Journal article

Journal

Neurobiol Dis

Publication Date

10/2008

Volume

32

Pages

96 - 104

Keywords

Animals, Computer Simulation, Creutzfeldt-Jakob Syndrome, Disease Models, Animal, Hippocampus, Humans, Mice, Mice, Knockout, Mice, Transgenic, Prion Proteins, Prions, Receptors, N-Methyl-D-Aspartate, Synaptic Potentials