Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Diphosphoinositol pentakisphosphate kinase 2 (PPIP5K2) is one of the mammalian PPIP5K isoforms responsible for synthesis of diphosphoinositol polyphosphates (inositol pyrophosphates; PP-InsPs), regulatory molecules that function at the interface of cell signaling and organismic homeostasis. The development of drugs that inhibit PPIP5K2 could have both experimental and therapeutic applications. Here, we describe a synthetic strategy for producing naturally occurring 5-PP-InsP4, as well as several inositol polyphosphate analogs, and we study their interactions with PPIP5K2 using biochemical and structural approaches. These experiments uncover an additional ligand-binding site on the surface of PPIP5K2, adjacent to the catalytic pocket. This site facilitates substrate capture from the bulk phase, prior to transfer into the catalytic pocket. In addition to demonstrating a "catch-and-pass" reaction mechanism in a small molecule kinase, we demonstrate that binding of our analogs to the substrate capture site inhibits PPIP5K2. This work suggests that the substrate-binding site offers new opportunities for targeted drug design.

Original publication

DOI

10.1016/j.chembiol.2014.03.009

Type

Journal article

Journal

Chem Biol

Publication Date

22/05/2014

Volume

21

Pages

689 - 699

Keywords

Binding Sites, Biocatalysis, Crystallography, X-Ray, Dose-Response Relationship, Drug, Drug Discovery, Enzyme Inhibitors, Humans, Inositol Phosphates, Ligands, Models, Molecular, Molecular Conformation, Phosphotransferases (Phosphate Group Acceptor), Structure-Activity Relationship, Substrate Specificity, Surface Properties