Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Phosphoinositides regulate many cellular processes, and cellular levels are controlled by kinases and phosphatases. SHIP2 (SH2 (Src homology 2)-domain-containing inositol-phosphatase-2) plays a critical role in phosphoinositide signaling, cleaving the 5-phosphate from phosphatidylinositol 3,4,5-trisphosphate. SHIP2 is thought to be involved in type-2 diabetes and obesity, conditions that could therefore be open to pharmacological modulation of the enzyme. However, rational design of SHIP2 inhibitors has been limited by the absence of a high-resolution structure. Here, we present a 2.1 Å resolution crystal structure of the phosphatase domain of SHIP2 bound to the synthetic ligand biphenyl 2,3',4,5',6-pentakisphosphate (BiPh(2,3',4,5',6)P(5)). BiPh(2,3',4,5',6)P(5) is not a SHIP2 substrate but inhibits Ins(1,3,4,5)P(4) hydrolysis with an IC(50) of 24.8 ± 3.0 μM, (K(m) for Ins(1,3,4,5)P(4) is 215 ± 28 μM). Molecular dynamics simulations suggest that when BiPh(2,3',4,5',6)P(5) binds to SHIP2, a flexible loop folds over and encloses the ligand. Compounds targeting such a closed conformation might therefore deliver SHIP2-specific drugs.

Original publication

DOI

10.1021/cb200494d

Type

Journal article

Journal

ACS Chem Biol

Publication Date

18/05/2012

Volume

7

Pages

822 - 828

Keywords

Biphenyl Compounds, Crystallography, X-Ray, Drug Design, Enzyme Inhibitors, Humans, Models, Molecular, Phosphates, Phosphatidylinositol Phosphates, Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases, Phosphoric Monoester Hydrolases, src Homology Domains