Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The synthesis of a series of tetrahydrofuranyl alpha- and beta-xylopyranoside trisphosphates, designed by excision of three motifs of adenophostin A is reported. The synthetic route features improved preparations of allyl alpha-D-xylopyranoside and its 2-O-benzyl ether, and gives access to four diastereoisomeric trisphosphates, which show a range of abilities to mobilise Ca2+ from the intracellular stores of hepatocytes. A comparison of the potencies of the four trisphosphates provides useful information relating to the effects of stereochemical variation on the recognition of carbohydrate-based trisphosphates by D-myo-inositol 1,4,5-trisphosphate receptors. 1-O-[(3'S,4'R)-3-hydroxytetrahydrofuran-4-yl] alpha-D-xylopyranoside 3,4,3'-trisphosphate (8) is the most active member of the series with a potency close to Ins(1,4,5)P3; a beta-linked analogue, 1-O-[(3'R,4'S)-3-hydroxytetrahydrofuran-4-yl] beta-D-xylopyranoside 3,4,3'-trisphosphate, is ca. 20-fold weaker than Ins(1,4,5)P3, and the other compounds are much less active. While no compound attained a potency close to that of adenophostin A, we believe that 8 represents the minimal structure for potent Ca2+-releasing activity in this type of carbohydrate-based analogue.

Type

Journal

Carbohydr Res

Publication Date

08/05/2001

Volume

332

Pages

53 - 66

Keywords

Animals, Calcium, Calcium Channels, Cell Membrane Permeability, Inositol 1,4,5-Trisphosphate, Inositol 1,4,5-Trisphosphate Receptors, Isoenzymes, Liver, Molecular Conformation, Phospholipase C delta, Rats, Receptors, Cytoplasmic and Nuclear, Type C Phospholipases, Xylose