Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The activity of Bruton's tyrosine kinase (Btk) is important for the maturation of B cells. A variety of point mutations in this enzyme result in a severe human immunodeficiency known as X-linked agammaglobulinemia (XLA). Btk contains a pleckstrin-homology (PH) domain that specifically binds phosphatidylinositol 3,4,5-trisphosphate and, hence, responds to signalling via phosphatidylinositol 3-kinase. Point mutations in the PH domain might abolish membrane binding, preventing signalling via Btk. RESULTS: We have determined the crystal structures of the wild-type PH domain and a gain-of-function mutant E41K in complex with D-myo-inositol 1,3,4,5-tetra-kisphosphate (Ins (1,3,4,5)P4). The inositol Ins (1,3,4,5)P4 binds to a site that is similar to the inositol 1,4,5-trisphosphate binding site in the PH domain of phospholipase C-delta. A second Ins (1,3,4,5)P4 molecule is associated with the domain of the E41K mutant, suggesting a mechanism for its constitutive interaction with membrane. The affinities of Ins (1,3,4,5)P4 to the wild type (Kd = 40 nM), and several XLA-causing mutants have been measured using isothermal titration calorimetry. CONCLUSIONS: Our data provide an explanation for the specificity and high affinity of the interaction with phosphatidylinositol 3,4,5-trisphosphate and lead to a classification of the XLA mutations that reside in the Btk PH domain. Mis-sense mutations that do not simply destabilize the PH fold either directly affect the interaction with the phosphates of the lipid head group or change electrostatic properties of the lipid-binding site. One point mutation (Q127H) cannot be explained by these facts, suggesting that the PH domain of Btk carries an additional function such as interaction with a Galpha protein.

Type

Journal article

Journal

Structure

Publication Date

15/04/1999

Volume

7

Pages

449 - 460

Keywords

Agammaglobulinemia, Amino Acid Sequence, Amino Acid Substitution, Calorimetry, Crystallography, X-Ray, Dimerization, Humans, Inositol Phosphates, Membrane Lipids, Models, Molecular, Molecular Sequence Data, Phosphatidylinositols, Point Mutation, Protein Structure, Tertiary, Protein-Tyrosine Kinases, Recombinant Fusion Proteins, Sequence Alignment, Sequence Homology, Amino Acid, Structure-Activity Relationship, Substrate Specificity, X Chromosome