Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Adenophostin A is the most potent known agonist of D-myo-inositol 1, 4,5-trisphosphate [Ins(1,4,5)P3] receptors. Equilibrium competition binding studies with 3H-Ins(1,4,5)P3 showed that the interaction of a totally synthetic adenophostin A with both hepatic and cerebellar Ins(1,4,5)P3 receptors was indistinguishable from that of the natural product. At pH 8.3, a synthetic analog of adenophostin A (which we named acyclophostin), in which most elements of the ribose ring have been removed, bound with substantially higher affinity (Kd = 2.76 +/- 0.26 nM) than Ins(1,4,5)P3 (Kd = 7.96 +/- 1.02 nM) to the 3H-Ins(1,4,5)P3-binding sites of hepatic membranes. At pH 7, acyclophostin (EC50 = 209 +/- 12 nM) and Ins(1,4,5)P3 (EC50 = 153 +/- 11 nM) stimulated 45Ca++ release to the same maximal extent and from the same intracellular stores of permeabilized hepatocytes. Comparison of the affinities of a range of Ins(1,4,5)P3 and adenophostin analogs with their abilities to stimulate Ca++ release revealed that although all other agonists had similar EC50/Kd ratios, that for acyclophostin was significantly higher. Similar results were obtained with cerebellar membranes, which express almost entirely type 1 InsP3 receptors. When the radioligand binding and functional assays of hepatocytes were performed under identical conditions, the higher EC50/Kd ratio for acyclophostin was retained at pH 8.3, but it was similar to that for Ins(1,4,5)P3 when the assays were performed at pH 7. To directly assess whether acyclophostin was a partial agonist of hepatic Ins(1,4,5)P3 receptors, the kinetics of 45Ca++ efflux from permeabilized hepatocytes was measured with a temporal resolution of 80 ms using rapid superfusion. At pH 7, the kinetics of 45Ca++ release, including the maximal rate of release, evoked by maximal concentrations of acyclophostin or Ins(1,4,5)P3 were indistinguishable. At pH 8.3, however, the maximal rate of 45Ca++ release evoked by a supramaximal concentration of acyclophostin was only 69 +/- 7% of that evoked by Ins(1,4,5)P3. We conclude that acyclophostin is the highest affinity ribose-modified analog of adenophostin so far synthesized, that at high pH it is a partial agonist of inositol trisphosphate receptors, and that it may provide a structure from which to develop high-affinity antagonists of inositol trisphosphate receptors.

Type

Journal article

Journal

Mol Pharmacol

Publication Date

01/1999

Volume

55

Pages

109 - 117

Keywords

Adenosine, Animals, Brain, Calcium, Calcium Channels, Hydrogen-Ion Concentration, Inositol 1,4,5-Trisphosphate Receptors, Liver, Male, Rats, Rats, Wistar, Receptors, Cytoplasmic and Nuclear, Structure-Activity Relationship