Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The glyconucleotides adenophostin A and B are the most potent known agonists at type 1 inositol trisphosphate [Ins(1,4,5)P3] receptors, although their stuctures differ markedly from that of Ins(1,4,5)P3. Equilibrium competition binding with [3H]Ins(1,4,5)P3 and unidirectional 45Ca2+ flux measurements were used to examine the effects of adenophostin A in hepatocytes, which express predominantly type 2 Ins(1,4,5)P3 receptors. Both Ins(1,4,5)P3 (Kd = 8.65 +/- 0.98 nM) and adenophostin A (Kd = 0.87 +/- 0.20 nM) bound to a single class of [3H]Ins(1,4,5)P3-binding site and each fully mobilized the same intracellular Ca2+ pool; although, adenophostin A (EC50 = 10.9 +/- 0.7 nM) was more potent than Ins(1,4,5)P3 (EC50 = 153 +/- 11 nM). Working on the assumption that it is the phosphorylated glucose component of the adenophostins that mimics the critical features of Ins(1,4,5)P3, we synthesized various phosphorylated disaccharide analogs containing this structure. The novel disaccharide-based analogs, sucrose 3,4,3'-trisphosphate [Sucr(3,4,3')P3], alpha,alpha'-trehalose 3,4,3',4'-tetrakisphosphate [Trehal(3,4,3',4')P4], alpha,alpha'-trehalose 2,4,3', 4'-tetrakisphosphate [Trehal(2,4,3',4')P4], and methyl 3-O-(alpha-d-glucopyranosyl)-beta-d-ribofuranoside 2,3', 4'-trisphosphate [Rib(2,3',4')P3], were all able to mobilize the same intracellular Ca2+ pool as Ins(1,4,5)P3 and adenophostin A; although, none was as potent as adenophostin A. The rank order of potency of the analogs, adenophostin A > Ins(1,4,5)P3 approximately Rib(2,3',4')P3 > Trehal(2,4,3',4')P4 > Glc(2',3,4)P3 approximately Trehal(3,4,3',4')P4 > Sucr(3,4,3')P3, was the same in radioligand binding and functional assays of hepatic Ins(1,4,5)P3 receptors. Both Rib(2,3',4')P3, which was as potent as Ins(1,4,5)P3, and Trehal(2,4,3',4')P4 bound with significantly higher affinity ( approximately 27 and approximately 3-fold, respectively) than the only active carbohydrate agonist of Ins(1,4,5)P3 receptors previously examined [Glc(2',3,4)P3]. We conclude that phosphorylated disaccharides provide novel means of developing high-affinity ligands of Ins(1,4,5)P3 receptors.

Original publication

DOI

10.1021/bi971397v

Type

Journal article

Journal

Biochemistry

Publication Date

21/10/1997

Volume

36

Pages

12780 - 12790

Keywords

Adenosine, Animals, Binding, Competitive, Calcium Channels, Cell Membrane, Indicators and Reagents, Inositol 1,4,5-Trisphosphate, Inositol 1,4,5-Trisphosphate Receptors, Kinetics, Liver, Male, Molecular Structure, Nuclear Magnetic Resonance, Biomolecular, Rats, Rats, Wistar, Receptors, Cytoplasmic and Nuclear, Spectrometry, Mass, Fast Atom Bombardment, Structure-Activity Relationship, Sugar Phosphates