Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Adenosine 5'-diphosphoribose (ADPR) activates TRPM2, a Ca(2+), Na(+), and K(+) permeable cation channel. Activation is induced by ADPR binding to the cytosolic C-terminal NudT9-homology domain. To generate the first structure-activity relationship, systematically modified ADPR analogues were designed, synthesized, and evaluated as antagonists using patch-clamp experiments in HEK293 cells overexpressing human TRPM2. Compounds with a purine C8 substituent show antagonist activity, and an 8-phenyl substitution (8-Ph-ADPR, 5) is very effective. Modification of the terminal ribose results in a weak antagonist, whereas its removal abolishes activity. An antagonist based upon a hybrid structure, 8-phenyl-2'-deoxy-ADPR (86, IC50 = 3 μM), is more potent than 8-Ph-ADPR (5). Initial bioisosteric replacement of the pyrophosphate linkage abolishes activity, but replacement of the pyrophosphate and the terminal ribose by a sulfamate-based group leads to a weak antagonist, a lead to more drug-like analogues. 8-Ph-ADPR (5) inhibits Ca(2+) signalling and chemotaxis in human neutrophils, illustrating the potential for pharmacological intervention at TRPM2.

Original publication

DOI

10.1021/jm401497a

Type

Journal article

Journal

J Med Chem

Publication Date

27/12/2013

Volume

56

Pages

10079 - 10102

Keywords

Adenosine Diphosphate Ribose, Dose-Response Relationship, Drug, Drug Design, Humans, Models, Molecular, Molecular Structure, Structure-Activity Relationship, TRPM Cation Channels