Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Single agents against multiple drug targets are of increasing interest. Hormone-dependent breast cancer (HDBC) may be more effectively treated by dual inhibition of aromatase and steroid sulfatase (STS). The aromatase inhibitory pharmacophore was thus introduced into a known biphenyl STS inhibitor to give a series of novel dual aromatase-sulfatase inhibitors (DASIs). Several compounds are good aromatase or STS inhibitors and DASI 20 (IC(50): aromatase, 2.0 nM; STS, 35 nM) and its chlorinated congener 23 (IC(50): aromatase, 0.5 nM; STS, 5.5 nM) are examples that show exceptional dual potency in JEG-3 cells. Both biphenyls share a para-sulfamate-containing ring B and a ring A, which contains a triazol-1-ylmethyl meta to the biphenyl bridge and para to a nitrile. At 1 mg/kg po, 20 and 23 reduced plasma estradiol levels strongly and inhibited liver STS activity potently in vivo. 23 is nonestrogenic and potently inhibits carbonic anhydrase II (IC(50) 86 nM). A complex was crystallized and its structure was solved by X-ray crystallography. This class of DASI should encourage further development toward multitargeted therapeutic intervention in HDBC.

Original publication

DOI

10.1021/jm901705h

Type

Journal article

Journal

J Med Chem

Publication Date

11/03/2010

Volume

53

Pages

2155 - 2170

Keywords

Animals, Aromatase Inhibitors, Biphenyl Compounds, Cell Line, Tumor, Cell Proliferation, Crystallography, X-Ray, Female, Humans, Inhibitory Concentration 50, Magnetic Resonance Spectroscopy, Rats, Rats, Wistar, Spectrometry, Mass, Electrospray Ionization, Steryl-Sulfatase, Structure-Activity Relationship, Triazoles