Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

17Beta-hydroxysteroid dehydrogenases (17beta-HSDs) are a family of enzymes that regulate steroid availability within a tissue by catalysing the interconversion of active and inactive forms. Type 1 is up-regulated in many breast tumours, and is responsible for the reduction of oestrone to active oestradiol which stimulates cell proliferation within the tumour. Type 2 oxidises many active steroids to their inactive forms, including oestradiol to oestrone. In this study, we have compared the mRNA expression and enzyme activities of Type 1 and Type 2 in MCF-7, MDA-MB-231, T47D, JEG3 and 293-EBNA cell lines. Also studied were two cell lines stably expressing transfected Type 1 cDNA. RT-PCR indicated that little Type 1 mRNA is expressed in two of the breast cancer cell lines, MCF-7 and MDA-MB-231, and in 293-EBNA cells, but that expression is much higher in the T47D breast cancer cell line, and in the choriocarcinoma cell line, JEG3. However, a higher level of expression of Type 1 is seen in the transfected cell lines MCF-7.8H and 293-EBNA[His617beta-HSD1]. Activity assays show that there is high association between mRNA expression and enzyme activity. Assays indicate that, with the exception of MDA-MB-231 cells, Type 2 activity is low in these lines. The study of the basal activities of these enzymes will be used in future studies investigating the regulation of the enzymes by endogenous and exogenous factors. An understanding of their regulation in both healthy and malignant tissues may lead to future therapeutic intervention at the regulatory level.

Original publication

DOI

10.1016/j.mce.2006.01.011

Type

Publication Date

27/03/2006

Volume

248

Pages

246 - 249

Keywords

Breast Neoplasms, Cell Line, Tumor, Estradiol Dehydrogenases, Gene Expression Regulation, Enzymologic, Gene Expression Regulation, Neoplastic, Humans, RNA, Messenger, Reverse Transcriptase Polymerase Chain Reaction