Synthesis of potent agonists of the D-myo-inositol 1,4, 5-trisphosphate receptor based on clustered disaccharide polyphosphate analogues of adenophostin A.
de Kort M., Correa V., Valentijn AR., van der Marel GA., Potter BV., Taylor CW., van Boom JH.
Clustered disaccharide analogues of adenophostin A (2), i.e. mono-, di-, and tetravalent derivatives 6-8, respectively, were synthesized and evaluated as novel ligands for the tetrameric D-myo-inositol 1,4, 5-trisphosphate receptor (IP(3)R). The synthesis was accomplished via Sonogashira coupling of propargyl 2-O-acetyl-5-O-benzyl-3-O-(3, 4-di-O-acetyl-2, 6-di-O-benzyl-alpha-D-glucopyranosyl)-beta-D-ribofuranoside (16) with iodobenzene 18, 22, or 25, followed by deacetylation, phosphorylation, and deprotection. The abilities of the target compounds 6-8, as well as ribophostin 4, propylphostin 5, and IP(3) (1), to evoke Ca(2+) release from permeabilized hepatocytes or displacement of [(3)H]IP(3) from its receptor in hepatic membranes were compared. Although the binding affinities of 4-8 were similar, there were modest though significant differences in their potencies in Ca(2+) release assays: tetraphostin 8 > IP(3) approximately diphostin 7 > phenylphostin 6 > ribophostin 4 approximately propylphostin 5.