Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The ability of the novel D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) analogues, L-chiro-inositol 2,3,5-trisphosphate (L-ch-Ins(2,3,5)P3) and D-3-deoxy-3-fluoro-myo-inositol 1,4,5-trisphosphate (3F-Ins(1,4,5)P3), to bind to the Ins(1,4,5)P3 receptor, mobilise intracellular Ca2+ stores and interact with metabolic enzymes has been investigated. L-ch-Ins(2,3,5)P3 and 3F-Ins(1,4,5)P3 were bound by the Ins(1,4,5)P3 receptor from bovine adrenal cortex with relatively high affinity (Ki values 60.4 and 8.0 nM respectively) but with lower affinity than Ins(1,4,5)P3 (KD = 5.9 nM). Both analogues were apparent full agonists at the Ca2+ mobilising receptor in SH-SY5Y cells, but were less potent than Ins(1,4,5)P3 (EC50 L-ch-Ins(2,3,5)P3 = 1.4 microM, 3F-Ins(1,4,5)P3 = 0.37 microM and Ins(1,4,5)P3 = 0.12 microM). L-ch-Ins(2,3,5)P3 and 3F-Ins(1,4,5)P3 were resistant to Ins(1,4,5)P3 3-kinase, and were potent inhibitors of the enzyme (Ki values 7.1 and 8.6 microM respectively). 3F-Ins(1,4,5)P3 was hydrolysed by Ins(1,4,5)P3 5-phosphatase at a similar rate to Ins(1,4,5)P3, but inhibited dephosphorylation of [3H]Ins(1,4,5)P3 with high potency (apparent Ki = 3.9 microM) L-ch-Ins(2,3,5)P3 was also recognised by the enzyme with high affinity (Ki = 7.7 microM) but was resistant to hydrolysis. These results suggest that the environment around C-3 is of major importance for recognition not only by Ins(1,4,5)P3 3-kinase but also by Ins(1,4,5)P3 5-phosphatase.

Type

Journal article

Journal

Eur J Pharmacol

Publication Date

01/07/1992

Volume

226

Pages

265 - 272

Keywords

Adrenal Glands, Animals, Calcium, Cattle, Cells, Cultured, Erythrocyte Membrane, Humans, In Vitro Techniques, Inositol 1,4,5-Trisphosphate, Neuroblastoma, Phosphoric Monoester Hydrolases, Phosphotransferases, Phosphotransferases (Alcohol Group Acceptor), Substrate Specificity