Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Beta-C-glucoside trisphosphates having a C2 side chain (3,7-anhydro-2-deoxy-D-glycero-D-gulo-octitol 1,5,6-trisphosphate, 11) and a C3 side chain (4,8-anhydro-2,3-dideoxy-D-glycero-D-gulo-nonanitol 1,6,7-trisphosphate, 12) were designed as structurally simplified analogues of a potent D-myo-inositol 1,4,5-trisphosphate (IP3) receptor ligand, adenophostin A. Construction of the beta-C-glucosidic structure, which was the key to their synthesis, was achieved by two different methods based on the conformational restriction strategy: (1) radical cyclization with a temporary connecting silicon tether and (2) silane reduction of glyconolactols having an anomeric allyl substituent. Using these methods, the target beta-C-glycoside trisphosphates 11 and 12 were successfully synthesized. A structure-activity relationship was established on a series of C-glucoside trisphosphates, including the previously synthesized related compounds, which were a C-glycosidic analogue 3 of adenophostin A, its uracil congener 5, alpha-C-glucoside trisphosphates 7-9 having a C1, C2, or C3 side chain, and the beta-C-glucoside trisphosphates 10-12 having a C1, C2, or C3 side chain. The O-glycosidic linkage of adenophostin A and its analogues proved to be replaced by the chemically and biologically more stable C-glycosidic linkage. The alpha-C2-glucoside trisphosphate 8 stimulates Ca2+ release with a potency similar to that of IP3 in spite of its simplified structure, indicating a better fit to the receptor than the beta-C-glucoside trisphosphates and also the alpha-congeners having a shorter or longer C1 side chain, which was supported by molecular modeling using the ligand binding domain of the IP3 receptor.

Original publication

DOI

10.1021/jm051039n

Type

Journal article

Journal

J Med Chem

Publication Date

23/03/2006

Volume

49

Pages

1900 - 1909

Keywords

Animals, Binding Sites, Calcium, Calcium Channels, Cell Line, Chickens, Cyclization, Glucosides, Inositol 1,4,5-Trisphosphate Receptors, Ligands, Models, Molecular, Molecular Conformation, Organophosphates, Oxidation-Reduction, Rats, Receptors, Cytoplasmic and Nuclear, Recombinant Proteins, Silanes, Structure-Activity Relationship