Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Breast cancer is the leading cause of cancer deaths among women worldwide. The theory of targeting both cancer cells directly and their blood supply has significant therapeutic potential. However, to date, there are few clinically successful single agents that meet these criteria. 2-Methoxyestradiol-3,17-O,O-bis-sulfamate (2-MeOE2bisMATE) and 2-ethylestradiol-3,17-O,O-bis-sulfamate (2-EtE2bisMATE) are potent inhibitors of proliferation in a range of cancer cells. The work presented here demonstrates the potent in vitro and in vivo effects of these compounds. They cause apoptosis via the intrinsic mitochondrial pathway in both MDA-MB-231 breast cancer cells and endothelial cells. Furthermore, they are potent anti-angiogenic inhibitors in vivo, as shown by their ability to reduce endothelial staining in MDA-MB-231 xenograft tumors. We have developed a novel, flow cytometry based, ex vivo method which shows in cells recovered from MDA-MB-231 tumors treated with 2-MeOE2bisMATE and 2-EtE2bisMATE an increase in intra-tumoral G(2)-M arrest and apoptosis. The degree of apoptosis inversely correlates to tumor volume. Further in vivo studies reveal that both 2-MeOE2bisMATE and 2-EtE2bisMATE are orally bioavailable and extremely efficacious when compared to clinically tested drugs. As these compounds are anti-proliferative against breast cancer and endothelial cells they have the potential to be potent, dual acting clinical drugs of the future.

Original publication

DOI

10.1007/s10549-007-9791-5

Type

Journal article

Journal

Breast Cancer Res Treat

Publication Date

09/2008

Volume

111

Pages

251 - 260

Keywords

Angiogenesis Inhibitors, Animals, Antineoplastic Agents, Apoptosis, Breast Neoplasms, Cell Cycle, Cell Line, Tumor, Cell Proliferation, Energy Metabolism, Estradiol, Female, Humans, Mice, Neoplasm Transplantation, Sulfonic Acids, Transplantation, Heterologous