Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Drug combination therapy is a key strategy to improve treatment efficacy and survival of cancer patients. In this study the effects of combining 2-methoxyoestradiol-3,17-O,O-bis-sulphamate (STX140), a microtubule disruptor, with 2-deoxy-D-glucose (2DG) were assessed in MCF-7 (breast) and LNCaP (prostate) xenograft models in vivo. In mice bearing MCF-7 xenografts, daily p.o. administration of STX140 (5 mg kg(-1)) resulted in a 46% (P<0.05) reduction of tumour volume. However, the combination of STX140 (5 mg kg(-1) p.o.) and 2DG (2 g kg(-1) i.p.) reduced tumour volume by 76% (P<0.001). 2-Methoxyoestradiol-3,17-O,O-bis-sulphamate also reduced tumour vessel density. 2-Deoxy-D-glucose alone had no significant effect on tumour volume or vessel density. A similar benefit of the combination treatment was observed in the LNCaP prostate xenograft model. In vitro the degree of inhibition of cell proliferation by STX140 was unaffected by oxygen concentrations. In contrast, the inhibition of proliferation by 2DG was enhanced under hypoxia by 20 and 25% in MCF-7 and LNCaP cells, respectively. The combination of STX140 and 2DG in LNCaP cells under normoxia or hypoxia inhibited proliferation to a greater extent than either compound alone. These results suggest that the antiangiogenic and microtubule disruption activities of STX140 may make tumours more susceptible to inhibition of glycolysis by 2DG. This is the first study to show the benefit of combining a microtubule disruptor with 2DG in the two most common solid tumours.

Original publication

DOI

10.1038/sj.bjc.6604752

Type

Journal article

Journal

Br J Cancer

Publication Date

02/12/2008

Volume

99

Pages

1842 - 1848

Keywords

Animals, Antineoplastic Combined Chemotherapy Protocols, Apoptosis, Breast Neoplasms, Cell Cycle, Cell Hypoxia, Cell Line, Tumor, Cell Proliferation, Deoxyglucose, Estrenes, Female, Humans, Immunohistochemistry, Male, Mice, Mice, Nude, Prostatic Neoplasms, Xenograft Model Antitumor Assays