Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recent evidence suggests that the trace amine-associated receptor 1 (TAAR1) plays a pivotal role in the regulation of dopamine (DA) transmission and cocaine's actions. However, the underlying mechanisms through which TAAR1 activation mediates these effects have not yet been elucidated. Here, we used fast-scan cyclic voltammetry to measure DA dynamics and explore such mechanisms. We show, first, that the full TAAR1 agonist, RO5256390, dose-dependently blocked cocaine-induced inhibition of DA clearance in slices of the nucleus accumbens. Second, subthreshold inhibition of PKA or PKC phosphorylation did not prevent TAAR1 suppression of cocaine effects whereas subeffective doses of the DA D2 receptor antagonist, L-741,626, rescued cocaine's ability to produce changes in DA uptake in the presence of full TAAR1 activation, thus indicating that TAAR1 modulation of cocaine effects requires simultaneous DA D2 receptor activation. Predictably, inhibition of glycogen synthase kinase-3 (GSK-3), which results from activation of D2/TAAR1 heterodimers, fully reproduced the inhibitory effects of TAAR1 activation on cocaine-induced changes in DA transmission. Collectively, the present observations reveal that the ability of TAAR1 to regulate cocaine effects is linked to cooperative interactions with D2 autoreceptors and associated downstream molecular targets converging on GSK-3 and suggest a new mechanism to disrupt cocaine neurochemical actions.

Original publication

DOI

10.1038/s41598-017-14472-z

Type

Journal article

Journal

Sci Rep

Publication Date

24/10/2017

Volume

7

Keywords

Animals, Cocaine, Cyclic AMP-Dependent Protein Kinases, Dopamine, Dopamine D2 Receptor Antagonists, Enzyme Activation, Glycogen Synthase Kinase 3, Male, Neurochemistry, Protein Binding, Protein Kinase Inhibitors, Rats, Receptors, Dopamine D2, Receptors, G-Protein-Coupled, Synaptic Transmission