Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

KEY POINTS: Prolonged exposure to vascular endothelial growth factor A (VEGF-A) inhibits agonist-mediated endothelial cell Ca2+ release and subsequent activation of intermediate conductance Ca2+ -activated K+ (IKCa ) channels, which underpins vasodilatation as a result of endothelium-dependent hyperpolarization (EDH) in mouse resistance arteries. Signalling via mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) downstream of VEGF-A was required to attenuate endothelial cell Ca2+ responses and the EDH-vasodilatation mediated by IKCa activation. VEGF-A exposure did not modify vasodilatation as a result of the direct activation of IKCa channels, nor the pattern of expression of inositol 1,4,5-trisphosphate receptor 1 within endothelial cells of resistance arteries. These results indicate a novel role for VEGF-A in resistance arteries and suggest a new avenue for investigation into the role of VEGF-A in cardiovascular diseases. ABSTRACT: Vascular endothelial growth factor A (VEGF-A) is a potent permeability and angiogenic factor that is also associated with the remodelling of the microvasculature. Elevated VEGF-A levels are linked to a significant increase in the risk of cardiovascular dysfunction, although it is unclear how VEGF-A has a detrimental, disease-related effect. Small resistance arteries are central determinants of peripheral resistance and endothelium-dependent hyperpolarization (EDH) is the predominant mechanism by which these arteries vasodilate. Using isolated, pressurized resistance arteries, we demonstrate that VEGF-A acts via VEGF receptor-2 (R2) to inhibit both endothelial cell (EC) Ca2+ release and the associated EDH vasodilatation mediated by intermediate conductance Ca2+ -activated K+ (IKCa ) channels. Importantly, VEGF-A had no direct effect against IKCa channels. Instead, the inhibition was crucially reliant on the downstream activation of the mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 (MEK1/2). The distribution of EC inositol 1,4,5-trisphosphate (IP3 ) receptor-1 (R1) was not affected by exposure to VEGF-A and we propose an inhibition of IP3 R1 through the MEK pathway, probably via ERK1/2. Inhibition of EC Ca2+ via VEGFR2 has profound implications for EDH-mediated dilatation of resistance arteries and could provide a mechanism by which elevated VEGF-A contributes towards cardiovascular dysfunction.

Original publication

DOI

10.1113/JP275793

Type

Journal article

Journal

J Physiol

Publication Date

03/06/2018

Keywords

MEK, VEGF-A, endothelial cell calcium, endothelium-derived hyperpolarizing factor, vasodilation