Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Sighted people predominantly use vision to navigate spaces, and sight loss has negative consequences for independent navigation and mobility. The recent proliferation of devices that can extract 3D spatial information from visual scenes opens up the possibility of using such mobility-relevant information to assist blind and visually impaired people by presenting this information through modalities other than vision. In this work, we present two new methods for encoding visual scenes using spatial audio: simulated echolocation and distance-dependent hum volume modulation. We implemented both methods in a virtual reality (VR) environment and tested them using a 3D motion-tracking device. This allowed participants to physically walk through virtual mobility scenarios, generating data on real locomotion behaviour. Blindfolded sighted participants completed two tasks: maze navigation and obstacle avoidance. Results were measured against a visual baseline in which participants performed the same two tasks without blindfolds. Task completion time, speed and number of collisions were used as indicators of successful navigation, with additional metrics exploring detailed dynamics of performance. In both tasks, participants were able to navigate using only audio information after minimal instruction. While participants were 65% slower using audio compared to the visual baseline, they reduced their audio navigation time by an average 21% over just 6 trials. Hum volume modulation proved over 20% faster than simulated echolocation in both mobility scenarios, and participants also showed the greatest improvement with this sonification method. Nevertheless, we do speculate that simulated echolocation remains worth exploring as it provides more spatial detail and could therefore be more useful in more complex environments. The fact that participants were intuitively able to successfully navigate space with two new visual-to-audio mappings for conveying spatial information motivates the further exploration of these and other mappings with the goal of assisting blind and visually impaired individuals with independent mobility.

Original publication

DOI

10.1371/journal.pone.0199389

Type

Journal article

Journal

PLoS One

Publication Date

2018

Volume

13

Keywords

Adult, Auditory Perception, Brain Mapping, Female, Hearing, Humans, Male, Maze Learning, Software, Space Perception, User-Computer Interface, Virtual Reality, Vision, Ocular, Visual Perception, Young Adult