Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

We investigated the chronotropic effect of increasing concentrations of sodium nitroprusside (SNP, n = 8) or 3-morpholinosydnonimine (SIN-1, n = 6) in isolated guinea pig spontaneously beating sinoatrial node/atrial preparations. Low concentrations of NO donors (nanomolar to micromolar) gradually increased the beating rate, whereas high (millimolar) concentrations decreased it. The increase in rate was (1) enhanced by superoxide dismutase (50 to 100 U/mL, n = 6), (2) prevented by the guanylyl cyclase inhibitors 6-anilino-5,8-quinolinedione (5 mumol/L, n = 6) or 1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one (10 mumol/L, n = 6), and (3) mimicked by 8-bromo-cGMP (n = 6) with no additional positive chronotropic effect of SIN-1 (n = 5). The response to 10 mumol/L SNP (n = 28) or 50 mumol/L SIN-1 (n = 16) was unaffected by IcaL antagonism with nifedipine (0.2 mumol/L) but was abolished after blockade of the hyperpolarization-activated inward current (I(f)) by Cs+ (2 mmol/L) or 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino)pyrimidinium chloride (1 mumol/L). The effect on I(f) was further evaluated in rabbit isolated patch-clamped sinoatrial node cells (n = 21), where we found that 5 mumol/L SNP or SIN-1 caused a reversible Cs(+)-sensitive increase in this current (+130% at -70 mV and +250% at -100 mV). In conclusion, NO donors can affect pacemaker activity in a concentration-dependent biphasic fashion. Our results indicate that the increase in beating rate is due to stimulation of I(f) via the NO-cGMP pathway. This may contribute to the sinus tachycardia in pathological conditions associated with an increase in myocardial production of NO.

Type

Journal article

Journal

Circ res

Publication Date

07/1997

Volume

81

Pages

60 - 68

Keywords

Animals, Cyclic GMP, Data Interpretation, Statistical, Female, Guinea Pigs, Heart Rate, In Vitro Techniques, Ion Channels, Male, Molsidomine, Nitric Oxide, Nitroprusside, Rabbits, Sinoatrial Node, Superoxide Dismutase, Time Factors, Vasodilator Agents