Acute effects of 3,4-methylenedioxymethamphetamine (MDMA) on 5-HT cell firing and release: comparison between dorsal and median raphe 5-HT systems.
Gartside SE., McQuade R., Sharp T.
It is proposed that 3,4-methylenedioxymethamphetamine (MDMA; Ecstasy) is more toxic to 5-HT neurones projecting from the dorsal raphe nucleus (DRN) than to those from the median raphe nucleus (MRN). Since increased 5-HT release has been associated with MDMA-induced neurotoxicity, MDMA may have a DRN-selective 5-HT releasing effect. Here we have compared the effects of acute MDMA on DRN and MRN 5-HT pathways using in vivo electrophysiological and neurochemical techniques. MDMA inhibited the firing of 5-HT neurones in both the DRN and the MRN, and did so with similar potency (ED50 values, 0.589 +/- 0.151 (8) and 0.588 +/- 0.207 (6) mg/kg i.v., respectively). In both nuclei this inhibitory effect was reversed by the selective 5-HT1A receptor antagonist, WAY 100635 (0.1 mg/kg i.v.). Microdialysis measurements were made in the frontal cortex and dorsal hippocampus, regions which receive a DRN- and an MRN-selective 5-HT innervation, respectively. A dose of 1 mg/kg i.v. MDMA increased extracellular 5-HT 3-fold in both the frontal cortex and dorsal hippocampus. A higher dose (3 mg/kg i.v.) increased 5-HT levels 8-fold in both regions. Overall, our data suggest that MDMA releases 5-HT from the cell body and terminal regions of both DRN and MRN 5-HT pathways, and does so in a qualitatively and quantitatively similar fashion. We conclude that any DRN-selectivity in the neurotoxic effects of MDMA is not due to a DRN-selective, acute 5-HT releasing action of the drug.