Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
Skip to main content

Parvalbumin-expressing basket cells tightly control cortical networks and fire remarkably stereotyped during network oscillations and simple behaviors. How can these cells support multifaceted situations with different behavioral options and complex temporal sequences? We recorded from identified parvalbumin-expressing basket cells in prefrontal cortex of freely moving rats performing a multidimensional delayed cue-matching-to-place task, juxtacellularly filled recorded neurons for unequivocal histological identification, and determined their activity during temporally structured task episodes, associative working-memory, and stimulus-guided choice behavior. We show that parvalbumin-expressing basket cells do not fire homogenously, but individual cells were recruited or inhibited during different task episodes. Firing of individual basket cells was correlated with amount of presynaptic VIP (vasoactive intestinal polypeptide)-expressing GABAergic input. Together with subsets of pyramidal neurons, activity of basket cells differentiated for sequential actions and stimulus-guided choice behavior. Thus, interneurons of the same cell type can be recruited into different neuronal ensembles with distinct firing patterns to support multi-layered cognitive computations.

Original publication

DOI

10.1016/j.neuron.2016.08.010

Type

Journal article

Journal

Neuron

Publication Date

21/09/2016

Volume

91

Pages

1390 - 1401

Keywords

Animals, Choice Behavior, Decision Making, GABAergic Neurons, Interneurons, Male, Memory, Short-Term, Parvalbumins, Prefrontal Cortex, Presynaptic Terminals, Pyramidal Cells, Rats, Vasoactive Intestinal Peptide